

Please send your comments to: KZrobok@Setfocus.com

1

Sun Certified Web Component Developer Study Guide - v2

Sun Certified Web Component Developer Study Guide .. 1
Authors Note... 2
Servlets ... 3

The Servlet Model ... 3
The Structure and Deployment of Modern Servlet Web Applications 10
The Servlet Container Model ... 13
Designing and Developing Servlets to Handle Server-side Expectations 17
Designing and Developing Servlets Using Session Management 21
Designing and Developing Secure Web Applications .. 24
Designing and Developing Thread-safe Servlets .. 32

JSPs .. 35
The JSP Model .. 35
Designing and Developing Reusable Web Components ... 41
Designing and Developing JSPs Using JavaBeans ... 42
Designing and Developing JSPs Using Custom Tags... 45
Designing and Developing a Custom Tag Library.. 47

J2EE Design Patterns .. 52
Value Objects.. 53
Model View and Control (MVC)... 54
Data Access Object (DAO) ... 57
Business Delegate ... 59

Please send your comments to: KZrobok@Setfocus.com

2

Authors Note

The following document was put together as a guide to study for the Sun
Certified Web Component Developer Exam. This document is actually a
formatted version of the study notes that were used to study for the certification
exam.

Most of the following document comes straight from the Servlet 2.3 and JSP 1.2
specifications, literally cut and paste!

The intent of this document is to share resources with other Java developers and
should be freely distributed. If this document is used, please feel free to drop the
author a message with your comments.

Please Note*
With regards to Objective Section 8.5 about the order of events of a Jsp, the first
version of this guide was incorrect. It has been updated thanks to feedback
received from www.javaranch.com.

I appreciate the feedback that I have received up to this point. Remember this
document was intended to filter the important (potentially tested) parts from the
Jsp and Servlet specification and not as an all-encompassing guide on how to
pass every possible question on the exam.

Thanks

Please forward comments to:

Ken Zrobok
SCJP2, SCJD2, SCWCD
KZrobok@Setfocus.com

Java Developer / Trainer
http://www.SetFocus.com

Please send your comments to: KZrobok@Setfocus.com

3

Servlets

The Servlet Model

1.1 For each of the HTTP methods, GET, POST and PUT, identify the
corresponding method in the HttpServlet class.

HttpServlet is an abstract class that requires sub classing to create an HTTP
servlet suitable for a Web site. HttpServlet must override at least one method,
usually one of the following:

doGet, if the servlet supports HTTP GET requests
doPost for the HTTP POST requests
doPut for the HTTP put requests

There is no reason to override the class’s service method since service handles
HTTP requests by dispatching them to handler methods for each type of HTTP
request.

1.2 For each of the HTTP methods, GET, POST and HEAD identify the triggers that
might cause a browser to use the method and identify benefits or functionality of
the method.

HTTP POST method allows the client to send data of unlimited length to the Web
server a single time and is useful when posting information such as credit card
numbers. The information is usually posted from a HTML form.

HTTP GET method retrieves whatever information (in the form of an entity) is
identified by the Request-URI. If the Request-URI refers to a data-producing
process, it is the produced data which shall be returned as the entity in the
response and not the source text of the process, unless that text happens to be
the output of the process.

HTTP HEAD method is a GET request that returns no body in the response, on
the request header fields. The client sends a HEAD request when it wants to see
only the headers of a response, such as Content-Type or Content-Length. The
HTTP HEAD method counts the number of output bytes in the response to set
the Content-Length header accurately. This method can be used for obtaining
meta-information about the entity implied by the request without transferring the
entity-body itself. This method is often used for testing hypertext links for validity,
accessibility, and recent modification.

The servlet container must write the headers before committing the response,
because in HTTP the headers must be sent before the response body.

Please send your comments to: KZrobok@Setfocus.com

4

1.3 For each of the following operations, identify the interface and method name
that should be used:

Retrieve HTML form parameters from the request

Request parameters are strings sent by the client to a servlet container as part of
a request.

When the request is an HttpServletRequest, the attributes are populated from the
URI query string and posted form data. The parameters are stored by the servlet
container as a set of name-value pairs.

Multiple parameter values can exist for any given parameter name. The following
methods of the ServletRequest interface are available to access parameters:

o getParameter
o getParameterNames
o getParameterValues

The getParameterValues method returns an array of String objects containing
all the parameter values associated with a parameter name. The value returned
from the getParameter method must be the first value in the array of String
objects returned by getParameterValues.

All form data from both the query string and the post body are aggregated into
the request parameter set. The order of the aggregation puts the query string
data before post body data. For example, if a request is made with a query string
of a=hello and a post body of a=goodbye&a=world, the resulting parameter set
would be ordered a=(hello, goodbye, world).

Retrieve a servlet initialization parameter

The ServletConfig interface has the getInitParameter(String) as well as the
getInitParameterNames() methods.

public String getInitParameter(String)

Returns a String containing the value of the named initialization
parameter, or null if the parameter does not exist.

public Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as an
Enumeration of String objects.

Please send your comments to: KZrobok@Setfocus.com

5

Retrieve HTTP request header information

A servlet can access the headers of an HTTP request through the following
methods of the HttpServletRequest interface:

o getHeader
o getHeaders
o getHeaderNames

The getHeader method returns a header given the name of the header. There
can be multiple headers with the same name, e.g. Cache-Control headers, in an
HTTP request.

If there are multiple headers with the same name, the getHeader method returns
the first head in the request. The getHeaders method allows access to all the
header values associated with a particular header name, returning an
Enumeration of String objects.

Headers may contain String representations of int or Date data. The following
convenience methods of the HttpServletRequest interface provide access to
header data in a one of these formats:

o getIntHeader
o getDateHeader

If the getIntHeader method cannot translate the header value to an int, a
NumberFormatException is thrown. If the getDateHeader method cannot
translate the header to a Date object, an IllegalArgumentException is thrown.

Set an HTTP response header

A servlet can set headers of an HTTP response via the following methods of the
HttpServletResponse interface:

o setHeader
o addHeader

The setHeader method sets a header with a given name and value. A previous
header is replaced by the new header. Where a set of header values exist for the
name, the values are cleared and replaced with the new value.

The addHeader method adds a header value to the set with a given name. If
there are no headers already associated with the name, a new set is created.

Headers may contain data that represents an int or a Date object. The following
convenience methods of the HttpServletResponse interface allow a servlet to set
a header using the correct formatting for the appropriate data type:

o setIntHeader
o setDateHeader

Please send your comments to: KZrobok@Setfocus.com

6

o addIntHeader
o addDateHeader

To be successfully transmitted back to the client, headers must be set before the
response is committed. Headers set after the response is committed will be
ignored by the servlet container.

Set the content type of the response

The ServletResponse interface has the method setContentType(String).

 public void setContentType(java.lang.String type)

Sets the content type of the response being sent to the client. The content
type may include the type of character encoding used,
for example: text/html; charset=ISO-8859-4.

Acquire a text stream for the response

The ServletResponse interface has the method getWriter(). To send character
data, use the PrintWriter object returned by getWriter().

 public java.io.PrintWriter getWriter() throws java.io.IOException

Returns a PrintWriter object that can send character text to the client.

Calling flush() on the PrintWriter commits the response.

Acquire a binary stream for the response

The ServletResponse interface has the method getOutputStream(). To send
binary data in a MIME body response, use the ServletOutputStream returned by
getOutputStream().

public ServletOutputStream getOutputStream() throws IOException

Returns a ServletOutputStream suitable for writing binary data in the
response. The servlet container does not encode the binary data.

Calling flush() on the ServletOutputStream commits the response.

Redirect an HTTP request to another URL

The HttpServletResponse interface has the method sendRedirect(String)
method that sends a temporary redirect response to the client using the specified
redirect location URL.

public void sendRedirect(String location) throws IOException

Please send your comments to: KZrobok@Setfocus.com

7

Sends a temporary redirect response to the client using the specified
redirect location URL. This method can accept relative URLs; the servlet
container must convert the relative URL to an absolute URL before
sending the response to the client. If the location is relative without a
leading '/' the container interprets it as relative to the current request URI.
If the location is relative with a leading '/' the container interprets it as
relative to the servlet container root.

If the response has already been committed, this method throws an
IllegalStateException. After using this method, the response should be
considered to be committed and should not be written to.

1.4 Identify the interface and method to access values and resources and to set
object attributes within the following three Web scopes:

Request

ServletRequest interface has the following methods:

public java.lang.Object getAttribute(java.lang.String name)

Returns the value of the named attribute as an Object, or null if no
attribute of the given name exists.

public java.util.Enumeration getAttributeNames()

Returns an Enumeration containing the names of the attributes available
to this request.

public ServletInputStream getInputStream() throws java.io.IOException

Retrieves the body of the request as binary data using a
ServletInputStream.

public void setAttribute(java.lang.String name, java.lang.Object o)

Stores an attribute in this request. Attributes are reset between requests.
This method is most often used in conjunction with RequestDispatcher.

public void removeAttribute(java.lang.String name)

Removes an attribute from this request. This method is not generally
needed as attributes only persist as long as the request is being handled.

Session

The HttpSession interface has the following methods:

Please send your comments to: KZrobok@Setfocus.com

8

public java.lang.Object getAttribute(java.lang.String name)

Returns the object bound with the specified name in this session, or null if
no object is bound under the name

public java.util.Enumeration getAttributeNames()

Returns an Enumeration of String objects containing the names of all the
objects bound to this session.

public void setAttribute(java.lang.String name, java.lang.Object value)

Binds an object to this session, using the name specified.

public void removeAttribute(java.lang.String name)

Removes the object bound with the specified name from this session. If
the session does not have an object bound with the specified name, this
method does nothing.

Context

The ServletContext has the following methods:

A servlet can bind an object attribute into the context by name. Any attribute
bound into a context is available to any other servlet that is part of the same web
application. The following methods of ServletContext interface allow access to
this functionality:

o setAttribute
o getAttribute
o getAttributeNames
o removeAttribute

The ServletContext interface provides direct access to the hierarchy of static
content documents that are part of the web application, including HTML, GIF,
and JPEG files, via the following methods of the ServletContext interface:

o getResource
o getResourceAsStream

The getResource and getResourceAsStream methods take a String with a
leading “/” as argument which gives the path of the resource relative to the root of
the context. This hierarchy of documents may exist in the server’s file system, in
a web application archive file, on a remote server, or at some other location.
These methods are not used to obtain dynamic content.

For example, in a container supporting the JavaServer Pages specification 1, a
method call of the form getResource("/index.jsp") would return the JSP source
code and not the processed output.

Please send your comments to: KZrobok@Setfocus.com

9

1.5 Given a life-cycle method: init, service or destroy, identify correct statements
about its purpose or about how and when it is invoked.
Servlet:

This interface defines methods to initialize a servlet, to service requests, and to
remove a servlet from the server. These are known as life-cycle methods and are
called in the following sequence:

The servlet is constructed, and then initialized with the init method. Any calls
from clients to the service method are handled. The servlet is taken out of
service, then destroyed with the destroy method, then garbage collected and
finalized.

In addition to the life-cycle methods, this interface provides the getServletConfig
method, which the servlet can use to get any startup information, and the
getServletInfo method, which allows the servlet to return basic information
about itself, such as author, version, and copyright.

1.6 Use a RequestDispatcher to include or forward to a web resource.

ServletContext

Servlets (and JSP pages also) may be given names via server administration or
via a web application deployment descriptor. A servlet instance can determine its
name using ServletConfig.getServletName().

Returns a RequestDispatcher object that acts as a wrapper for the resource
located at the given path. A RequestDispatcher object can be used to forward a
request to the resource or to include the resource in a response. The resource
can be dynamic or static.

The pathname must begin with a "/" and is interpreted as relative to the current
context root. Use getContext to obtain a RequestDispatcher for resources in
foreign contexts.

This method returns null if the ServletContext cannot return a
RequestDispatcher.

ServletRequest

The pathname specified may be relative, although it cannot extend outside the
current servlet context. If the path begins with a "/" it is interpreted as relative to
the current context root. This method returns null if the servlet container cannot
return a RequestDispatcher.

Please send your comments to: KZrobok@Setfocus.com

10

The difference between this method and
ServletContext.getRequestDispatcher(java.lang.String) is that this method can
take a relative path.

Forward

Forwards a request from a servlet to another resource (servlet, JSP file, or HTML
file) on the server. This method allows one servlet to do preliminary processing of
a request and another resource to generate the response.

For a RequestDispatcher obtained via getRequestDispatcher(), the
ServletRequest object has its path elements and parameters adjusted to match
the path of the target resource.

forward should be called before the response has been committed to the client
(before response body output has been flushed). If the response already has
been committed, this method throws an IllegalStateException. Uncommitted
output in the response buffer is automatically cleared before the forward.

Include

Includes the content of a resource (servlet, JSP page, HTML file) in the
response. In essence, this method enables programmatic server-side includes.

The ServletResponse object has its path elements and parameters remain
unchanged from the caller's. The included servlet cannot change the response
status code or set headers; any attempt to make a change is ignored.

The Structure and Deployment of Modern Servlet Web Applications

2.1 Identify the structure of the Web Application and Web Archive file, the name of
the WebApp deployment descriptor and the name of the directories where you
place the following:

The WebApp deployment descriptor.
The WebApp class files.
Any auxiliary JAR files

A web application exists as a structured hierarchy of directories. The root of this
hierarchy serves as a document root files that are part of the application. For
example, for a web application with the context path /catalog in a web container,
the index.html file the base of the web application hierarchy can be served to
satisfy a request from /catalog/index.html.

Since the context path of an application determines the URL namespace of the
contents of the web application, web containers must reject web applications
defining a context path that is the same, determined case sensitively, as the
context path of a web application already deployed that exposes a potentially
conflicting URL namespace.

Please send your comments to: KZrobok@Setfocus.com

11

A special directory exists within the application hierarchy named “WEB-INF”.
This directory contains all things related to the application that aren’t in the
document root of the application. The WEB-INF node is not part of the public
document tree of the application. No file contained in the WEB-INF directory may
be served directly to a client by the container. However, the contents of the WEB-
INF directory are visible to servlet code using the getResource() and
getResourceAsStream() method calls on the ServletContext.

Any application specific configuration information that the developer needs
access to from servlet code yet does not wish to be exposed to the web client
may be placed under this directory.

Since requests are matched to resource mappings case-sensitively, client
requests for ‘/WEB-INF/ foo’, ‘/WEb-iNf/foo’, for example, should not result in
contents of the web application located under /WEB-INF being returned, nor any
form of directory listing thereof.

The contents of the WEB-INF directory are:

The /WEB-INF/web.xml

Deployment descriptor

The /WEB-INF/classes/*

Directory for servlet and utility classes. The classes in this directory are available
to the application class loader.

The /WEB-INF/lib/*.jar

Area for Java ARchive files. These files contain servlets, beans, and other utility
classes useful to the web application. The web application class loader can load
class from any of these archive files. The web application classloader loads
classes from the WEB-INF/classes directory first, and then from library JARs in
the WEB-INF/lib directory. Library JARs are loaded from in the same order as
they appear in the WAR archive entries.

2.2 Match the name with a description of purpose or functionality, for each of the
following deployment descriptor elements:

Servlet instance

The servlet element contains the declarative data of a servlet. If a jsp-file is
specified and the load-on-startup element is present, then the JSP should be
precompiled and loaded.

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,
(servlet-class|jsp-file), init-param*, load-on-startup?, run-as?, security-role-ref*)
>

Please send your comments to: KZrobok@Setfocus.com

12

Servlet name

The servlet-name element contains the canonical name of the servlet. Each
servlet name is unique within the web application.

<!ELEMENT servlet-name (#PCDATA)>

Servlet class

The servlet-class element contains the fully qualified class name of the servlet.

<!ELEMENT servlet-class (#PCDATA)>

Initialization parameters

The init-param element contains a name/value pair as an initialization param of
the servlet

<!ELEMENT init-param (param-name, param-value, description?)>

URL to named servlet mapping

The servlet-mapping element defines a mapping between a servlet and a url
pattern

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>

The servlet-name element contains the canonical name of the servlet. Each
servlet name is unique within the web application.

<!ELEMENT servlet-name (#PCDATA)>

The url-pattern element contains the url pattern of the mapping. Must follow the
rules specified in Section 11.2 of the Servlet API Specification.

<!ELEMENT url-pattern (#PCDATA)>

Example

<servlet>

<servlet-name>catalog</servlet-name>
<servlet-class>com.mycorp.CatalogServlet</servlet-class>
<init-param>

 <param-name>catalog</param-name>
<param-value>Spring</param-value>

</init-param>
</servlet>

<servlet-mapping>

Please send your comments to: KZrobok@Setfocus.com

13

<servlet-name>catalog</servlet-name>
<url-pattern>/catalog/*</url-pattern>

</servlet-mapping>

The Servlet Container Model

3.1 Identify the uses for and the interfaces (or classes) and methods to achieve
the following features:

Servlet context init parameters

ServletContext

The following methods of the ServletContext interface allow the servlet access to
context initialization parameters associated with a web application through its
deployment descriptor:

o getInitParameter
o getInitParameterNames

Initialization parameters are used by an application developer to convey setup
information. Typical examples are a webmaster’s e-mail address, or the name of
a system that holds critical data.

Servlet context listener

ServletContextListener

Implementations of this interface receive notifications about changes to the
servlet context of the web application they are part of. To receive notification
events, the implementation class must be configured in the deployment
descriptor for the web application.

public void contextInitialized(ServletContextEvent sce)

Notification that the web application is ready to process requests.

public void contextDestroyed(ServletContextEvent sce)

Notification that the servlet context is about to be shut down.

Servlet context attribute listener

ServletContextAttributeListener

Please send your comments to: KZrobok@Setfocus.com

14

Implementations of this interface receive notifications of changes to the attribute
list on the servlet context of a web application. To receive notification events, the
implementation class must be configured in the deployment descriptor for the
web application.

public void attributeAdded(ServletContextAttributeEvent scab)

Notification that a new attribute was added to the servlet context. Called
after the attribute is added.

public void attributeRemoved(ServletContextAttributeEvent scab)

Notification that an existing attribute has been removed from the servlet
context. Called after the attribute is removed.

public void attributeReplaced(ServletContextAttributeEvent scab)

Notification that an attribute on the servlet context has been replaced.
Called after the attribute is replaced.

Session attribute listeners

HttpSessionAttributeListener

This listener interface can be implemented in order to get notifications of changes
to the attribute lists of sessions within this web application.

public void attributeAdded(HttpSessionBindingEvent se)

Notification that an attribute has been added to a session. Called after the
attribute is added.

public void attributeRemoved(HttpSessionBindingEvent se)

Notification that an attribute has been removed from a session. Called
after the attribute is removed.

public void attributeReplaced(HttpSessionBindingEvent se)

Notification that an attribute has been replaced in a session. Called after
the attribute is replaced.

Please send your comments to: KZrobok@Setfocus.com

15

Other Listeners

HttpSessionListener

Implementations of this interface may are notified of changes to the list of active
sessions in a web application. To receive notification events, the implementation
class must be configured in the deployment descriptor for the web application.

public void sessionCreated(HttpSessionEvent se)

Notification that a session was created.

public void sessionDestroyed(HttpSessionEvent se)

Notification that a session was invalidated.

HttpSessionActivationListener

Objects that are bound to a session may listen to container events notifying them
that sessions will be passivated and that session will be activated. A container
that migrates session between VMs or persists sessions is required to notify all
attributes bound to sessions implementing HttpSessionActivationListener.

HttpSessionBindingListener

Causes an object to be notified when it is bound to or unbound from a session.
The object is notified by an HttpSessionBindingEvent object. This may be as a
result of a servlet programmer explicitly unbinding an attribute from a session,
due to a session being invalidated, or die to a session timing out.

3.2 Identify the WebApp deployment descriptor element name that declares the
following features:

Servlet context init parameters

The context-param element contains the declaration of a web application’s
servlet context initialization parameters.

<!ELEMENT context-param (param-name, param-value, description?)>

The param-name element contains the name of a parameter. Each parameter
name must be unique in the web application.

<!ELEMENT param-name (#PCDATA)>
The param-value element contains the value of a parameter.

Please send your comments to: KZrobok@Setfocus.com

16

<!ELEMENT param-value (#PCDATA)>

Example

<web-app>

<context-param>
<param-name>Webmaster</param-name>
<param-value>webmaster@mycorp.com</param-value>

</context-param>
</web-app>

Servlet context listener & Session attribute listeners & Servlet context attribute
listeners

The listener element indicates the deployment properties for a web application
listener bean.

<!ELEMENT listener (listener-class)>

The listener-class element declares a class in the application must be registered
as a web application listener bean. The value is the fully qualified class name of
the listener class.

<!ELEMENT listener-class (#PCDATA)>

Example

The following example is the deployment grammar for registering two servlet
context lifecycle listeners and an HttpSession listener.

Suppose that com.acme.MyConnectionManager and
com.acme.MyLoggingModule both implement
javax.servlet.ServletContextListener, and that com.acme.MyLoggingModule
additionally implements javax.servlet.HttpSessionListener. Also the developer
wants com.acme.MyConnectionManager to be notified of servlet context lifecycle
events before com.acme.MyLoggingModule. Here is the deployment descriptor
for this application:

<web-app>

<display-name>MyListeningApplication</display-name>

<listener>
 <listener-class>com.acme.MyConnectionManager</listener-class>

</listener>

<listener>
<listener-class>com.acme.MyLoggingModule</listener-class>

</listener>

Please send your comments to: KZrobok@Setfocus.com

17

<servlet>
<display-name>RegistrationServlet</display-name>

</servlet>
</web-app>

3.3 Distinguish the behavior of the following in a distributable:
o Servlet context init parameters
o Servlet context listener
o Servlet context attribute listeners
o Session attribute listeners

See 3.2

Designing and Developing Servlets to Handle Server-side
Expectations

4.1 For each of the following cases, identify correctly constructed code for
handling business logic exceptions and match that code with the correct
statements about the code’s behavior: Return an HTTP error using the sendError
response method; Return and HTTP error using the setStatus method.

Error Pages

To allow developers to customize the appearance of content returned to a web
client when a servlet generates an error, the deployment descriptor defines a list
of error page descriptions. The syntax allows the configuration of resources to be
returned by the container either when a servlet sets a status code to indicate an
error on the response, or if the servlet generates a Java exception or error that
propagates to the container.

If a status code indicating an error is set on the response, the container consults
the list of error page declarations for the web application that use the status-code
syntax and attempts a match. If there is a match, the container serves back the
resource as indicated by the location entry.

A Servlet may throw the following exceptions during processing of a request:

o runtime exceptions or errors
o ServletExceptions or subclasses thereof
o IOExceptions or subclasses thereof

The web application may have declared error pages using the exception-type
syntax. In this case the container matches the exception type by comparing the
exception thrown with the list of error-page definitions that use the exception-type

Please send your comments to: KZrobok@Setfocus.com

18

syntax. A match results in the container serving back the resource indicated in
the location entry. The closest match in the class hierarchy wins.

If no error-page declaration containing an exception-type fits using the class-
hierarchy match, and the exception thrown is a ServletException or subclass
thereof, the container extracts the wrapped exception, as defined by the
ServletException.getRootCause() method. It makes a second pass over the
error page declarations, again attempting the match against the error page
declarations, but using the wrapped exception instead. Error-page declarations
using the exception-type syntax in the deployment descriptor must be unique up
to the classname of the exception-type. Similarly, error-page declarations using
the status-code syntax must be unique in the deployment descriptor up to the
status code.

The error page mechanism described does not intervene when errors occur in
servlets invoked using the RequestDispatcher. In this way, a servlet using the
RequestDispatcher to call another servlets has the opportunity to handle errors
generated in the servlet it calls.

If a Servlet generates an error that is unhandled by the error page mechanism as
described above, the container must ensure the status code of the response is
set to status code 500.

The following convenience methods exist in the HttpServletResponse interface:

o sendRedirect
o sendError

The sendRedirect method will set the appropriate headers and content body to
redirect the client to a different URL. It is legal to call this method with a relative
URL path, however the underlying container must translate the relative path to a
fully qualified URL for transmission back to the client.
If a partial URL is given and, for whatever reason, cannot be converted into a
valid URL, then this method must throw an IllegalArgumentException.

The sendError method will set the appropriate headers and content body for an
error message to return to the client. An optional String argument can be
provided to the sendError method which can be used in the content body of the
error.

These methods will have the side effect of committing the response, if it has not
already been committed, and terminating it. No further output to the client should
be made by the servlet after these methods are called. If data is written to the
response after these methods are called, the data is ignored.

If data has been written to the response buffer, but not returned to the client (i.e.
the response is not committed), the data in the response buffer must be cleared
and replaced with the data set by these methods. If the response is committed,
these methods must throw an IllegalStateException.

Please send your comments to: KZrobok@Setfocus.com

19

HttpServletResponse

public void sendError(int sc) throws java.io.IOException

Sends an error response to the client using the specified status code and
clearing the buffer.

If the response has already been committed, this method throws an
IllegalStateException. After using this method, the response should be
considered to be committed and should not be written to.

public void sendError(int sc, String msg) throws IOException

Sends an error response to the client using the specified status clearing
the buffer. The server defaults to creating the response to look like an
HTML-formatted server error page containing the specified message,
setting the content type to "text/html", leaving cookies and other headers
unmodified. If an error-page declaration has been made for the web
application corresponding to the status code passed in, it will be served
back in preference to the suggested msg parameter.

If the response has already been committed, this method throws an
IllegalStateException. After using this method, the response should be
considered to be committed and should not be written to.

public void setStatus(int sc)

Sets the status code for this response. This method is used to set the
return status code when there is no error (for example, for the status
codes SC_OK or SC_MOVED_TEMPORARILY). If there is an error, and
the caller wishes to invoke an defined in the web application, the
sendError method should be used instead.

4.2 Given a set of business logic exceptions, identify the following: The
configuration that the deployment descriptor uses to handle each exception; How
to use the RequestDispatcher to forward the request to an error page; specify the
handling declaratively in the deployment descriptor.

The error-page element contains a mapping between an error code or exception
type to the path of a resource in the web application

<!ELEMENT error-page ((error-code | exception-type), location)>

The error-code contains an HTTP error code, ex: 404

<!ELEMENT error-code (#PCDATA)>

Please send your comments to: KZrobok@Setfocus.com

20

The exception type contains a fully qualified class name of a Java exception
type.

<!ELEMENT exception-type (#PCDATA)>

The location element contains the location of the resource in the web application
relative to the root of the web application. The value of the location must have a
leading ‘/’.

<!ELEMENT location (#PCDATA)>

Example 1

<web-app>

<error-page>
 <error-code>404</error-code>
 <location>/404.html</location>

</error-page>
</web-app>

Example 2

<web-app>
 <error-page>
 <exception-type>java.lang.NumberFormatException</exception-type>
 <location>/MyException.html</location>
 </error-page>
</web-app>

4.3 Identify the method used for the following: Write a message to the WebApp
log; Write a message and an exception to the WebApp log.

HttpServlet (inherited from GenericServlet)

public void log(java.lang.String msg)

Writes the specified message to a servlet log file, prepended by the
servlet's name.

public void log(java.lang.String message, java.lang.Throwable t)

Please send your comments to: KZrobok@Setfocus.com

21

Writes an explanatory message and a stack trace for a given Throwable
exception to the servlet log file, prepended by the servlet's name

ServletContext

public void log(java.lang.String msg)

Writes the specified message to a servlet log file, usually an event log.

The name and type of the servlet log file is specific to the servlet
container.

public void log(java.lang.String message, java.lang.Throwable throwable)

Writes an explanatory message and a stack trace for a given Throwable
exception to the servlet log file.

The name and type of the servlet log file is specific to the servlet
container, usually an event log.

Designing and Developing Servlets Using Session Management

5.1 Identify the interface and method for each of the following:

Retrieve a session object across multiple requests to the same or different
servlets within the same WebApp.

HttpSession

Provides a way to identify a user across more than one page request or visit to a
Web site and to store information about that user.

The servlet container uses this interface to create a session between an HTTP
client and an HTTP server. The session persists for a specified time period,
across more than one connection or page request from the user. A session
usually corresponds to one user, who may visit a site many times. The server
can maintain a session in many ways such as using cookies or rewriting URLs.

Store objects into a session object.

public void setAttribute(String name, Object value)

Binds an object to this session, using the name specified. If an object of
the same name is already bound to the session, the object is replaced.

Please send your comments to: KZrobok@Setfocus.com

22

Retrieve objects from a session object.

public Object getAttribute(String name)

Returns the object bound with the specified name in this session, or null if
no object is bound under the name.

Respond to the event when a particular object is added to a session.

HttpSessionBindingListener

Causes an object to be notified when it is bound to or unbound from a session.
The object is notified by an HttpSessionBindingEvent object. This may be as a
result of a servlet programmer explicitly unbinding an attribute from a session,
due to a session being invalidated, or die to a session timing out.

After setAttribute(String) method executes and if the new object implements
HttpSessionBindingListener, the container calls
HttpSessionBindingListener.valueBound. The container then notifies any
HttpSessionAttributeListeners in the web application.

If an object was already bound to this session of this name that implements
HttpSessionBindingListener, its HttpSessionBindingListener.valueUnbound
method is called.

If the value passed in is null, this has the same effect as calling
removeAttribute().

Respond to the event when a session is created and destroyed.

HttpSessionListener

Implementations of this interface may are notified of changes to the list of active
sessions in a web application. To receive notification events, the implementation
class must be configured in the deployment descriptor for the web application.

public void sessionCreated(HttpSessionEvent se)

Notification that a session was created.

public void sessionDestroyed(HttpSessionEvent se)

Notification that a session was invalidated.

Expunge a session object.

Please send your comments to: KZrobok@Setfocus.com

23

Invalidate

public void invalidate()

Invalidates this session then unbinds any objects bound to it.

5.2 Given a scenario, state whether a session object will be invalidated.

In the HTTP protocol, there is no explicit termination signal when a client is no
longer active. This means that the only mechanism that can be used to indicate
when a client is no longer active is a timeout period. The default timeout period
for sessions is defined by the servlet container and can be obtained via the
getMaxInactiveInterval method of the HttpSession interface.

This timeout can be changed by the Developer using the setMaxInactiveInterval
method of the HttpSession interface. The timeout periods used by these methods
are defined in seconds. By definition, if the timeout period for a session is set to -
1, the session will never expire.

The session-config element defines the session parameters for this web
application.

<!ELEMENT session-config (session-timeout?)>

The session-timeout element defines the default session timeout interval for all
sessions created in this web application. The specified timeout must be
expressed in a whole number of minutes. If the timeout is 0 or less, the container
ensures the default behavior of sessions is never to time out.

<!ELEMENT session-timeout (#PCDATA)>

Example

<web-app>
 … .
 <session-config>

<session-timeout>30</session-timeout>
</session-config>
… ..

</web-app>

5.3 Given that URL-rewriting must be used for session management, identify the
design requirement on session-related HTML pages.

Session tracking through HTTP cookies is the most used session tracking
mechanism and is required to be supported by all servlet containers.

Please send your comments to: KZrobok@Setfocus.com

24

The container sends a cookie to the client. The client will then return the cookie
on each subsequent request to the server, unambiguously associating the
request with a session. The name of the session tracking cookie must be
JSESSIONID.

URL rewriting is the lowest common denominator of session tracking. When a
client will not accept a cookie, URL rewriting may be used by the server as the
basis for session tracking.

URL rewriting involves adding data, a session id, to the URL path that is
interpreted by the container to associate the request with a session. The session
id must be encoded as a path parameter in the URL string. The name of the
parameter must be jsessionid.

Here is an example of a URL containing encoded path information:

http://www.myserver.com/catalog/index.html;jsessioid=1234

Designing and Developing Secure Web Applications

6.1 Identify correct descriptions or statements about the security issues:

o authentication
o authorization
o data integrity
o auditing
o malicious code
o Web site attacks

A web application contains resources that can be accessed by many users.
These resources often traverse unprotected, open networks such as the Internet.
In such an environment, a substantial number of web applications will have
security requirements.

Although the quality assurances and implementation details may vary, servlet
containers have mechanisms and infrastructure for meeting these requirements
that share some of the following characteristics:

Authentication: The means by which communicating entities prove to one an-
other that they are acting on behalf of specific identities that are authorized for
access.

Access control for resources: The means by which interactions with resources
are limited to collections of users or programs for the purpose of enforcing
integrity, confidentiality, or availability constraints.

Please send your comments to: KZrobok@Setfocus.com

25

Data Integrity: The means used to prove that information has not been modified
by a third party while in transit.

Confidentiality or Data Privacy: The means used to ensure that information is
made available only to users who are authorized to access it.

6.2 Identify the deployment descriptor element names, and their structure, that
declare the following:

o a security constraint
o a Web resource
o the login configuration
o a security role

Security constraints are a declarative way of annotating the intended protection
of web content.

A constraint consists of the following elements:

o web resource collection
o authorization constraint
o user data constraint

A web resource collection is a set of URL patterns and HTTP methods that
describe a set of resources to be protected. All requests that contain a request
path that matches a URL pattern described in the web resource collection is
subject to the constraint. The container matches URL patterns defined in security
constraints using the same algorithm described in this specification for matching
client requests to servlets and static resources.

An authorization constraint is a set of security roles to which users must
belong for access to resources described by the web resource collection. If the
user is not part of an allowed role, the user must be denied access to the
resource requiring it. If the authorization constraint defines no roles, no user is
allowed access to the portion of the web application defined by the security
constraint.

A user data constraint describes requirements for the transport layer of the
client server: The requirement may be for content integrity (preventing data
tampering in the communication process) or for confidentiality (preventing
reading while in transit). The container must at least use SSL to respond to
requests to resources marked integral or confidential. If the original request was
over HTTP, the container must redirect the client to the HTTPS port.

Please send your comments to: KZrobok@Setfocus.com

26

Where there are multiple security constraints specified, the container matches
authentication methods and authorizations to security constraints on a ‘first
match wins’ basis.

A security role is a logical grouping of users defined by the Application
Developer or Assembler. When the application is deployed, roles are mapped by
a Deployer to principals or groups in the runtime environment.

A servlet container enforces declarative or programmatic security for the principal
associated with an incoming request based on the security attributes of the
principal. This may happen in either of the following ways:

A deployer has mapped a security role to a user group in the operational
environment.

The user group to which the calling principal belongs is retrieved from its security
attributes. The principal is in the security role only if the principal’s user group
matches the user group to which the security role has been mapped by the
deployer.

A deployer has mapped a security role to a principal name in a security policy
domain. In this case, the principal name of the calling principal is retrieved from
its security attributes. The principal is in the security role only if the principal
name is the same as a principal name to which the security role was mapped.

The security-constraint element is used to associate security constraints with one
or more web resource collections.

 <!ELEMENT security-constraint (display-name?, web-resource-collection+,
 auth-constraint?, user-data-constraint?)>

The web-resource-collection element is used to identify a subset of the resources
and HTTP methods on those resources within a web application to which a
security constraint applies. If no HTTP methods are specified, then the security
constraint applies to all HTTP methods.

<!ELEMENT web-resource-collection (web-resource-name, description?,
 url-pattern*, http-method*)>

The web-resource-name contains the name of this web resource collection

<!ELEMENT web-resource-name (#PCDATA)>

The http-method contains an HTTP method (GET | POST |...)

<!ELEMENT http-method (#PCDATA)>

The user-data-constraint element is used to indicate how data communicated
between the client and container should be protected

Please send your comments to: KZrobok@Setfocus.com

27

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

The transport-guarantee element specifies that the communication between
client and server should be NONE, INTEGRAL, or CONFIDENTIAL.

NONE means that the application does not require any transport guarantees.

A value of INTEGRAL means that the application requires that the data sent
between the client and server be sent in such a way that it can’t be changed in
transit.

CONFIDENTIAL means that the application requires that the data be transmitted
in a fashion that prevents other entities from observing the contents of the
transmission.

In most cases, the presence of the INTEGRAL or CONFIDENTIAL flag will
indicate that the use of SSL is required.

<!ELEMENT transport-guarantee (#PCDATA)>

The auth-constraint element indicates the user roles that should be permitted
access to this resource collection. The role-name used here must either
correspond to the role-name of one of the security-role elements defined for this
web application, or be the specially reserved role-name "*" that is a compact
syntax for indicating all roles in the web application. If both "*" and rolenames
appear, the container interprets this as all roles.

If no roles are defined, no user is allowed access to the portion of the web
application described by the containing security-constraint.

The container matches role names case sensitively when determining access.

<!ELEMENT auth-constraint (description?, role-name*)>

The role-name element contains the name of a security role.

<!ELEMENT role-name (#PCDATA)>

The login-config element is used to configure the authentication method that
should be used, the realm name that should be used for this application, and the
attributes that are needed by the form login mechanism.

<!ELEMENT login-config (auth-method?, realm-name?, form-login-config?)>

The realm name element specifies the realm name to use in HTTP Basic
authorization

<!ELEMENT realm-name (#PCDATA)>

Please send your comments to: KZrobok@Setfocus.com

28

The security-role element contains the declaration of a security role which is
used in the security-constraints placed on the web application.

<!ELEMENT security-role (description?, role-name)>

The security-role-ref element defines a mapping between the name of role called
from a Servlet using isUserInRole(String name) and the name of a security role
defined for the web application.

For example, to map the security role reference "FOO" to the security role with
role-name "manager" the syntax would be:

<security-role-ref>

<role-name>FOO</role-name>
<role-link>manager</manager>

</security-role-ref>

In this case if the servlet called by a user belonging to the "manager" security
role made the API call isUserInRole("FOO") the result would be true.

Since the role-name "*" has a special meaning for authorization constraints, its
value is not permitted here.

<!ELEMENT security-role-ref (description?, role-name, role-link)>

The role-link element is used to link a security role reference to a defined security
role. The role-link element must contain the name of one of the security roles
defined in the security-role elements.

<!ELEMENT role-link (#PCDATA)>

Example

<web-app>

<display-name>A Secure Application</display-name>
<security-role>

<role-name>manager</role-name>
</security-role>
<servlet>

<servlet-name>catalog</servlet-name>
<servlet-class>com.mycorp.CatalogServlet</servlet-class>
<init-param>

<param-name>catalog</param-name>
<param-value>Spring</param-value>

</init-param>
<security-role-ref>

<role-name>MGR</role-name>
<!-- role name used in code -->
<role-link>manager</role-link>

</security-role-ref>
 </servlet>

Please send your comments to: KZrobok@Setfocus.com

29

<servlet-mapping>

<servlet-name>catalog</servlet-name>
<url-pattern>/catalog/*</url-pattern>

</servlet-mapping>

<security-constraint>

<web-resource-collection>
<web-resource-name>SalesInfo</web-resource-name>
<url-pattern>/salesinfo/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>manager</role-name>
</auth-constraint>
<user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>
</web-app>

6.3 Given an authentication type: BASIC, DIGEST, FORM and CLIENT-CERT,
identify the correct definition of its mechanism.

A web client can authenticate a user to a web server using one of the following
mechanisms:

o HTTP Basic Authentication
o HTTP Digest Authentication
o HTTPS Client Authentication
o Form Based Authentication

HTTP Basic Authentication

HTTP Basic Authentication, which is based on a username and password, is the
authentication mechanism defined in the HTTP/1.0 specification. A web server
requests a web client to authenticate the user.

As part of the request, the web server passes the realm (a string) in which the
user is to be authenticated. The realm string of Basic Authentication does not
have to reflect any particular security policy domain (confusingly also referred to
as a realm). The web client obtains the username and the password from the
user and transmits them to the web server. The web server then authenticates
the user in the specified realm.

Basic Authentication is not a secure authentication protocol. User passwords are
sent in simple base64 encoding, and the target server is not authenticated.

Please send your comments to: KZrobok@Setfocus.com

30

HTTP Digest Authentication

Like HTTP Basic Authentication, HTTP Digest Authentication authenticates a
user based on a username and a password. However the authentication is
performed by transmitting the password in an encrypted form which is much
more secure than the simple base64 encoding used by Basic Authentication, e.g.
HTTPS Client Authentication.

As Digest Authentication is not currently in wide-spread use, servlet containers
are encouraged but not required to support it.

HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong
authentication mechanism. This mechanism requires the user to possess a
Public Key Certificate (PKC). Currently, PKCs are useful in e-commerce
applications and also for a single-signon from within the browser. Servlet
containers that are not J2EE compliant are not required to support the HTTPS
protocol.

Form Based Authentication

The look and feel of the “login screen” cannot be varied using the web browser’s
built-in authentication mechanisms. This specification introduces a required form
based authentication mechanism which allows a Developer to control the look
and feel of the login screens.

The web application deployment descriptor contains entries for a login form and
error page. The login form must contain fields for entering a username and a
password. These fields must be named ’j_username’ and ’j_password’,
respectively.

When a user attempts to access a protected web resource, the container checks
the user’s authentication. If the user is authenticated and possesses authority to
access the resource, the requested web resource is activated and a reference to
it is returned. If the user is not authenticated, all of the following steps occur:

The login form associated with the security constraint is sent to the client and the
URL path triggering the authentication is stored by the container.

The user is asked to fill out the form, including the username and password
fields.

The client posts the form back to the server.

The container attempts to authenticate the user using the information from the
form.

Please send your comments to: KZrobok@Setfocus.com

31

If authentication fails, the error page is returned using either a forward or a re-
direct, and the status code of the response is set to 401.

If authentication succeeds, the authenticated user’s principal is checked to see if
it is in an authorized role for accessing the resource.

If the user is authorized, client is redirected to the resource using the stored URL
path. The error page sent to a user that is not authenticated contains information
about the failure.

Form Based Authentication has the same lack of security as Basic Authentication
since the user password is transmitted as plain text and the target server is not
authenticated.

Form based login and URL based session tracking can be problematic to
implement. Form based login should be used only when sessions are being
maintained by cookies or by SSL session information.

In order for the authentication to proceed appropriately, the action of the login
form must always be j_security_check. This restriction is made so that the login
form will work no matter which resource it is for, and to avoid requiring the server
to specify the action field of the outbound form.

Here is an example showing how the form should be coded into the HTML page:

<form method=”POST” action=”j_security_check”>

<input type=”text” name=”j_username”>
<input type=”password” name=”j_password”>

</form>

If the form based login is invoked because of an HTTP request, the original
request parameters must be preserved by the container for use if, on successful
authentication, it redirects the call to the requested resource.

The form-login-config element specifies the login and error pages that should be
used in form based login. If form based authentication is not used, these
elements are ignored.

<!ELEMENT form-login-config (form-login-page, form-error-page)>

The form-login-page element defines the location in the web app where the page
that can be used for login can be found. The path begins with a leading / and is
interpreted relative to the root of the WAR.

<!ELEMENT form-login-page (#PCDATA)>

The form-error-page element defines the location in the web app where the error
page that is displayed when login is not successful can be found. The path
begins with a leading / and is interpreted relative to the root of the WAR.

Please send your comments to: KZrobok@Setfocus.com

32

<!ELEMENT form-error-page (#PCDATA)>

The auth-method element is used to configure the authentication mechanism for
the web application. As a prerequisite to gaining access to any web resources
which are protected by an authorization constraint, a user must have
authenticated using the configured mechanism.

Legal values for this element are "BASIC", "DIGEST", "FORM", or "CLIENT-
CERT".

<!ELEMENT auth-method (#PCDATA)>

Designing and Developing Thread-safe Servlets

7.1 Identify which attribute scopes are thread-safe:

o local variables
o instance variables
o class variables
o request attributes
o session attributes
o context attributes

Number of Instances

For a servlet not implementing SingleThreadModel and not hosted in a
distributed environment (the default), the servlet container must use only one
instance per servlet declaration.

For a servlet implementing the SingleThreadModel interface, the servlet
container may instantiate multiple instances to handle a heavy request load and
serialize requests to a particular instance.

In the case where a servlet was deployed as part of an application marked in the
deployment descriptor as distributable, a container may have only one instance
per servlet declaration per VM. If the servlet in a distributable application
implements the SingleThreadModel interface, the container may instantiate
multiple instances of that servlet in each VM of the container.

Note about SingleThreadModel

The use of the SingleThreadModel interface guarantees that only one thread at a
time will execute in a given servlet instance’s service method. It is important to
note that this guarantee only applies to each servlet instance, since the container
may choose to pool such objects.

Please send your comments to: KZrobok@Setfocus.com

33

Objects that are accessible to more than one servlet instance at a time, such as
instances of HttpSession, may be available at any particular time to multiple
servlets, including those that implement SingleThreadModel.

Multithreading Issues

A servlet container may send concurrent requests through the service method of
the servlet. To handle the requests the developer of the servlet must make
adequate provisions for concurrent processing with multiple threads in the
service method.

An alternative for the developer is to implement the SingleThreadModel interface
which requires the container to guarantee that there is only one request thread at
a time in the service method. A servlet container may satisfy this requirement by
serializing requests on a servlet, or by maintaining a pool of servlet instances.

If the servlet is part of a web application that has been marked as distributable,
the container may maintain a pool of servlet instances in each VM that the
application is distributed across.

For servlets not implementing the SingleThreadModel interface, if the service
method (or methods such as doGet or doPost which are dispatched to the
service method of the HttpServlet abstract class) has been defined with the
synchronized keyword, the servlet container cannot use the instance pool
approach, but must serialize requests through it.

It is strongly recommended that developers not synchronize the service
method (or methods despatched to it) in these circumstances because of
detrimental effects on performance.

Thread Safety

Implementations of the request and response objects are not guaranteed to be
thread-safe. This means that they should only be used within the scope of the
request handling thread.

References to the request and response objects must not be given to objects
executing in other threads as the resulting behavior may be nondeterministic.

Session Semantics and Threading Issues

Multiple servlets executing request threads may have active access to a single
session object at the same time. The Developer has the responsibility for
synchronizing access to session resources as appropriate.

Listener Instances and Threading

The container is required to complete instantiation of the listener classes in a
web application prior to the start of execution of the first request into the

Please send your comments to: KZrobok@Setfocus.com

34

application. The container must reference each listener instance until the last
request is serviced for the web application.

Attribute changes to ServletContext and HttpSession objects may occur
concurrently.

The container is not required to synchronize the resulting notifications to attribute
listener classes. Listener classes that maintain state are responsible for the
integrity of the data and should handle this case explicitly.

7.2 Identify correct statements about differences between multi-threaded and
single-threaded servlet models.

See 7.1

7.3 Identify the interface used to declare that a servlet must use the single thread
model.

SingleThreadModel

Ensures that servlets handle only one request at a time. This interface has no
methods.

If a servlet implements this interface, you are guaranteed that no two threads will
execute concurrently in the servlet's service method. The servlet container can
make this guarantee by synchronizing access to a single instance of the servlet,
or by maintaining a pool of servlet instances and dispatching each new request
to a free servlet.

This interface does not prevent synchronization problems that result from
servlets accessing shared resources such as static class variables or classes
outside the scope of the servlet.

Please send your comments to: KZrobok@Setfocus.com

35

JSPs

The JSP Model

8.1 Write the opening and closing tags for the following JSP tag types:

directive

Directive elements have a syntax of the form <%@ directive...%>
Directives have this syntax: <%@directive {attr=”value ” }* %>.

declaration

Declarations follow the syntax <%! ... %>;

<%! declaration(s) %>

scriptlet

Scriptlets follow the syntax <% %>;

<%scriptlet %>

expression

Expressions follow the syntax <%= ... %>.

<%=expression %>

8.2 Given a type of JSP tag identify correct statements about its purpose or use.

Directives provide global information that is conceptually valid independent of
any specific request received by the JSP page. They provide information for the
translation phase. Directives are messages to the JSP container.

o The page directive defines a number of page dependent
properties and communicates these to the JSP container.

o The taglib directive in a JSP page declares that the page uses a

tag library, uniquely identifies the tag library using a URI and
associates a tag prefix that will distinguish usage of the actions in
the library.

o The include directive is used to substitute text and/or code at JSP

page translation-time.

Please send your comments to: KZrobok@Setfocus.com

36

Scripting elements provide glue around template text and actions. There are
three types of scripting elements: declarations, scriptlets and expressions.

Declarations are used to declare variables and methods in the scripting language
used in a JSP page. A declaration should be a complete declarative statement,
or sequence thereof, according to the syntax of the scripting language specified.
Declarations do not produce any output into the current out stream. Declarations
are initialized when the JSP page is initialized and are made available to other
declarations, scriptlets, and expressions.

Scriptlets can contain any code fragments that are valid for the scripting
language specified in the language directive. Whether the code fragment is legal
depends on the details of the scripting language. Scriptlets are executed at
request-processing time. Whether or not they produce any output into the out
stream depends on the code in the scriptlet.

An expression element in a JSP page is a scripting language expression that is
evaluated and the result is coerced to a String. The result is subsequently
emitted into the current out JspWriter object.

8.3 Given a JSP tag type identify the equivalent XML-based tags.

Directive: page

<%@page info=”my latest JSP Example” %>

or

<jsp:directive.page info=”my latest JSP Example” />

Directive: include

<%@include file=”copyright.html” %>

or

<jsp:directive.include file=”copyright.html” />

Scripting Element: Declaration

<%! int i =0; %>

or

Please send your comments to: KZrobok@Setfocus.com

37

<jsp:declaration>int i=0; </jsp:declaration>

Scripting Element: Scriptlet

<%

if (Calendar.getInstance().get(Calendar.AM_PM)==Calendar.AM) {
Good Morning
}else {
Good Afternoon
}

%>

or

<jsp:scriptlet>

if (Calendar.getInstance().get(Calendar.AM_PM)==Calendar.AM) {
Good Morning
}else {
Good Afternoon
}

</jsp:scriptlet>

Scritping Element: Expression

<%= (new java.util.Date()).toLocaleString() %>

or

<jsp:expression>(new java.util.Date()).toLocaleString() </jsp:expression>

8.4 Identify the page directive attributes and its values, that:

imports a Java class into the JSP page

<%@page import=”java.util.Enumeration” %>

declares that a JSP page exists within a session

<%@page session=”true” %>

Please send your comments to: KZrobok@Setfocus.com

38

declares that a JSP page uses an error page

<%@page errorPage=”myErrorPage.jsp” %>

declares that a JSP page is an error page

<%@page isErrorPage=”true” %>

8.5 Identify and put in sequence the following elements of the JSP life-cycle:
o page translation
o JSP compilation
o load class
o create instance
o call jspInit
o call _jspService
o call _jspDestroy

JSP Life Cycle Information

JSP pages are textual components. They go through two phases: a translation
phase, and a request phase. Translation is done once per page. The request
phase is done once per request.

The JSP page is translated to create a servlet class, the JSP page
implementation class that is instantiated at request time. The instantiated JSP
page object handles requests and creates responses.

JSP pages may be translated prior to their use, providing the web application,
with a servlet class that can serve as the textual representation of the JSP page.

The translation may also be done by the JSP container at deployment time or on-
demand as the requests reach an untranslated JSP page.

In the execution phase the container manages one or more instances of this
class in response to requests and other events.

During the translation phase the container locates or creates the JSP page
implementation class that corresponds to a given JSP page. This process is
determined by the semantics of the JSP page. The container interprets the
standard directives and actions, and the custom actions referencing tag libraries
used in the page. A tag library may optionally provide a validation method to
validate that a JSP page is correctly using the library.

A JSP container has flexibility in the details of the JSP page implementation
class that can be used to address quality-of-service, most notably performance-
issues.

Please send your comments to: KZrobok@Setfocus.com

39

During the execution phase the JSP container delivers events to the JSP page
implementation object. The container is responsible for instantiating request and
response objects and invoking the appropriate JSP page implementation object.

Upon completion of processing, the response object is received by the container
for communication to the client.

The translation of a JSP source page into its implementation class can occur at
any time between initial deployment of the JSP page into the JSP container and
the receipt and processing of a client request for the target JSP page.

When the first request is delivered to a JSP page, a jspInit()method, if present,
will be called to prepare the page. Similarly, a JSP container may invoke a JSP’s
_jspDestroy() method to reclaim the resources used by the JSP page at any
time when a request is not being serviced. This is the same life-cycle as for
servlets.

A JSP page may be compiled into its implementation class plus deployment
information during development. (A JSP page can also be compiled at
deployment time.)

Compilation of a JSP page in the context of a web application provides resolution
of relative URL specifications in include directives (and elsewhere), taglib
references, and translation-time actions used in custom actions.

A JSP page can also be compiled at deployment time.

Order of Events

The translation of a JSP source page into its implementation class can occur at
any time between initial deployment of the JSP page into the JSP container and
the receipt and processing of a client request for the target JSP page.

A JSP page can be compiled at development time or wait until deployment time
to compile. During the compilation the JSP page is converted to the page
implementation class (in other words a Servlet).

page translation ?JSP compilation

Once the page is requested the container loads the class and creates and
instance of that class.

load class?create instance

The first time the JSP page is requested the jspInit() method is called, and the
request is handled by the _jspService() method.

?call jspInit?call _jspService

Please send your comments to: KZrobok@Setfocus.com

40

When the container is done with the page, the _jspDestroy() method is called.
This is where any cleanup (database connection) may be handled.

_jspDestroy

8.6 Match correct descriptions about purpose, function, or use with any of the
following implicit objects:

request

The request object represents a sub class of: javax.servlet.ServletRequest
e.g: javax.servlet.HttpServletRequest

The request object can be used like the HttpServletRequest parameter of the
service() method of a Servlet.

response

The response object represents a sub class of: javax.servlet.ServletResponse
e.g: servlet.HttpServletResponse

The response object can be used like the HttpServletResponse parameter of the
service() method of a Servlet.

out

The out object represents a JspWriter that will write to the JSP’s output stream.

session

The session object represents a user’s session (HttpSession) created for the
requesting client.

config

The config object represents the servlet config (ServletConfig) that represents
the servlet’s configuration.

application

The application object represents the servlet context (ServletContext) obtained
from the servlet config.

page

The instance of this page’s implementation class processing the current
request.

pageContext

The page context for this JSP page.

Please send your comments to: KZrobok@Setfocus.com

41

exception

 The uncaught Throwable that resulted in the error page being invoked.

8.7 Distinguish correct and incorrect scriptlet code for:

a conditional statement

<% if (Calendar.getInstance().get(Calendar.AM_PM)==Calendar.AM) {
 %>
 Good Morning
<%
} else {
%>
 Good Afternoon
<%
}
%>

an iteration statement

<% for (int i=0; i < 10; i++) {
%>

<p>HelloWorld Counter <%= i %></p>

<%
}
%>

Designing and Developing Reusable Web Components

9.1 Given a description of required functionality, identify the JSP directive or
standard tag in the correct format with the correct attributes required to specify
the inclusion of a Web Component into the JSP page.

The <%@include file=”relativeURLspec ” %>directive inserts the text of the
specified resource into the .jsp file. The included file is subject to the access
control available to the JSP container.

Examples

The following example requests the inclusion, at translation time, of a copy-right
file. The file may have elements which will be processed too.

<%@include file=”copyright.html ” %>

Please send your comments to: KZrobok@Setfocus.com

42

Syntax

<%@include file="relativeURLspec "%>

A <jsp:include .../>element provides for the inclusion of static and dynamic
resources in the same context as the current page.

Examples

<jsp:include page=”/templates/copyright.html ”/>

Syntax

<jsp:include page=”urlSpec ” flush=="true|false"/>

and

<jsp:include page=”urlSpec ” flush=="true|false">
 {<jsp:param/>}*
</jsp:include>

An include directive regards a resource like a JSP page as a static object; i.e. the
bytes in the JSP page are included. An include action regards a resource like a
JSP page as a dynamic object; i.e. the request is sent to that object and the
result of processing it is included.

Designing and Developing JSPs Using JavaBeans

10.1 For any of the following tag functions, match the correctly constructed tag,
with attributes and values as appropriate, with the corresponding description of
the tag’s functionality.

Declare the use of a JavaBean within the page.

A jsp:useBean action associates an instance of a Java programming language
object defined within a given scope and available with a given id with a newly
declared scripting variable of the same id.

Examples

In the following example, a Bean with name “connection” of type
myco.myapp.Connection ” is available after actions on this element, either
because it was already created and found, or because it is newly created.

<jsp:useBean id=”connection ” class=”com.myco.myapp.Connection ” />

Please send your comments to: KZrobok@Setfocus.com

43

Specify, for jsp:useBean or jsp:getProperty tags, the name of an attribute.
Specify, for a jsp:useBean tag, the class of the attribute.
Specify, for a jsp:useBean tag, the scope of the attribute.

<jsp:useBean id="name "scope="page|request|session|application" typeSpec />
typeSpec ::=class=”className ” ||
class=”className ” type=”typeName ” ||
type=”typeName ” class=”className ” ||
beanName=”beanName ” type=”typeName ” ||
type=”typeName ” beanName=”beanName ” ||
type=”typeName ”

If the action has a body, it is of the form:

<jsp:useBean id="name "scope="page|request|session|application" typeSpec >
 body
</jsp:useBean>

In this case, the body will be invoked if the Bean denoted by the action is
created. Typically, the body will contain either scriptlets or jsp:setProperty tags
that will be used to modify the newly created object, but the contents of the body
are not restricted.

The <jsp:useBean>tag has the following attributes:

id

The name used to identify the object instance in the specified scope’s
namespace, and also the scripting variable name declared and initialized
with that object reference.

The name specified is case sensitive and shall conform to the current
scripting language variable-naming conventions.

scope

The scope within which the reference is available. The default value is
page . The fully qualified name of the class that defines the
implementation of the object. The class name is case sensitive.

If the class and beanName attributes are not specified the object must be
present in the given scope.

beanName

Please send your comments to: KZrobok@Setfocus.com

44

The name of a Bean, as expected by the instantiate() method of the
java.beans.Beans class.

This attribute can accept a request-time attribute expression as a value.

type

If specified, it defines the type of the scripting variable defined. This
allows the type of the scripting variable to be distinct from, but related to,
the type of the implementation class specified.
The type is required to be either the class itself, a superclass of the class,
or an interface implemented by the class specified.

The object referenced is required to be of this type, otherwise a
java.lang.ClassCastException shall occur at request time when the
assignment of the object referenced to the scripting variable is attempted.

If unspecified, the value is the same as the value of the class attribute.

Access or mutate a property from a declared JavaBean.
Specify, for a jsp:getProperty tag, the property of the attribute.
Specify, for a jsp:setProperty tag, the property of the attribute to mutate and the
new value.

Examples

The following two elements set a value from the request parameter values.

<jsp:setProperty name=”request ” property=”*” />

<jsp:setProperty name=”user ” property=”user ” param=”username ” />

The following element sets a property from a value

<jsp:setProperty name=”results ”property=”row ” value=”<%=i+1 %>”/>

Syntax

<jsp:setProperty name="beanName"prop_expr />

prop_expr ::=property="*"|
property=”propertyName ”|
property=”propertyName ” param=="parameterName"|
property=”propertyName ” value==”propertyValue ”
propertyValue ::=string

The value propertyValue can also be a request-time attribute value.

Please send your comments to: KZrobok@Setfocus.com

45

Examples

<jsp:getProperty name=”user ” property=”name ” />

Syntax

<jsp:getProperty name=”name ” property=”propertyName ” />

10.2 Given JSP attribute scopes: request, session, application, identify the
equivalent servlet code.

Bean Scope: Servlet Scope:

Request HttpServletRequest
Session HttpSession
Application ServletContext

10.3 Identify techniques that access a declared JavaBean.

A jsp:useBean action associates an instance of a Java programming language
object defined within a given scope and available with a given id with a newly
declared scripting variable of the same id.

The jsp:useBean action is quite flexible; its exact semantics depends on the
attributes given. The basic semantic tries to find an existing object using id and
scope. If the object is not found it will attempt to create the object using the other
attributes.

It is also possible to use this action to give a local name to an object defined
elsewhere, as in another JSP page or in a Servlet. This can be done by using the
type attribute and not providing class or beanName attributes.

At least one of type and class must be present, and it is not valid to provide both
class and beanName. If type and class are present; class must be assignable to
type (in the Java platform sense). For it not to be assignable is a translation-time
error.

Designing and Developing JSPs Using Custom Tags

Identify properly formatted taglib directive in a JSP page.

The web.xml file can include a map between URIs and TLD resource paths. The
map is described using the taglib element of the Web Application Deployment
descriptor in WEB-INF/web.xml, as described in the Servlet 2.3 spec and in
“http://java.sun.com/j2ee/dtds/web-app_2_3.dtd”.

Please send your comments to: KZrobok@Setfocus.com

46

A taglib element has two sub-elements: taglib-uri and taglib-location.

<taglib>

A taglib is a sub-element of web-app:

The taglib element provides information on a tag library that is used by a JSP
page within the Web Application.

A taglib element has two sub-elements and one attribute:

<taglib-uri>

A taglib-uri element describes a URI identifying a tag library used in the
web application.

It may be either an absolute URI specification, or a relative URI.

<taglib-location>

A taglib-location contains the location (as a resource) of the Tag Library
Description File for the tag library.

Where to find the Tag Library Descriptor file.

Example

The use of relative URI specifications enables very short names in the taglib
directive. For example:

<%@taglib uri=”/myPRlibrary ” prefix=”x ” %>

<taglib>

<taglib-uri>/myPRlibrary</taglib-uri>
<taglib-location>/WEB-INF/tlds/PRlibrary_1_4.tld</taglib-uri>

</taglib>

11.2 Identify properly formatted taglib directive in a JSP page.

<%@taglib uri=”/myPRlibrary” prefix=”x” %>

11.3 Given a custom tag library identify properly formatted custom tag usage in a
JSP page. Uses include:

Assuming prefix ‘x’ and custom tag ‘sample’

an empty custom tag

 <x:sample />
 <x:sample></x:sample>

Please send your comments to: KZrobok@Setfocus.com

47

a custom tag with attributes

 <x:sample rows=”3” name=”someValue” />

a custom tag that surrounds other JSP code

 <x:sample>some JSP code as the body</x:sample>

nested custom tags

<x:sample>
 <x:if>some condition</x:if>
</x:sample>

Designing and Developing a Custom Tag Library

12.1 Identify the tag library descriptor element names that declare the following:

the name of the tag
the class of the tag handler
the type of content that the tag accepts
any attributes of the tag

The element syntax is as follows:

<!ELEMENT tag (name, tag-class, tei-class?, body-content?, display-name?,
small-icon?, large-icon?, description?, variable*,attribute*,example?)>

<tag-class>

Defines the tag handler class implementing the
javax.serlvet.jsp.tagext.Tag interface. This element is required.

The fully qualified Java class name.

<tei-class>

Defines the subclass of javax.servlet.jsp.tagext.TagExtraInfo for this tag.
This element is optional.

The fully qualified Java class name.

<body-content>

Provides a hint as to the content of the body of this action. Primarily
intended for use by page composition tools.

Please send your comments to: KZrobok@Setfocus.com

48

There are currently three values specified:

tagdependent

The body of the action is passed verbatim to be interpreted by the
tag handler itself, and is most likely in a different “language”, e.g.
embedded SQL statements. The body of the action may be
empty.

JSP

The body of the action contains elements using the JSP syntax.
The body of the action may be empty.

empty

The body must be empty. The default value is “JSP”.

12.2 Identify the tag library descriptor element names that declare the following:

the name of a tag attribute.
whether a tag attribute is required.
whether or not the attribute’s value can be dynamically specified.

<!ELEMENT attribute (name,required?,rtexprvalue?, type?, description?)>

<name>

Defines the canonical name of a tag or attribute being defined

<required>

Defines if the nesting attribute is required or optional.

 Values are: true | false | yes | no

If not present then the default is “false”, i.e. the attribute is optional.

<rtexprvalue>

Defines if the nesting attribute can have scriptlet expressions as a value,
i.e the value of the attribute may be dynamically calculated at request
time, as opposed to a static value determined at translation time.

 Values are: true | false | yes | no

If not present then the default is “false”, i.e the attribute has a static value.

<type>

Please send your comments to: KZrobok@Setfocus.com

49

Defines the Java type of the attribute’s value. For static values (those
determined at translation time) the type is always java.lang.String. If the
rtexprvalue element is true, that is the value of the nesting attribute may
be calculated from an expression scriptlet during request processing then
the type defines the return type expected from any scriptlet expression
specified as the value of this attribute.

The fully qualified Java class name of result type

An example is:
<type>java.lang.Object </type>

12.3 Given a custom tag, identify the necessary value for the bodycontent TLD
element for any of the following tag types:

empty-tag
custom tag that surrounds other JSP code
custom tag that surrounds content that is used only by the tag handler

<body-content>

Provides a hint as to the content of the body of this action. Primarily
intended for use by page composition tools.

There are currently three values specified:

tagdependent

The body of the action is passed verbatim to be interpreted by the
tag handler itself, and is most likely in a different “language”, e.g.
embedded SQL statements. The body of the action may be
empty.

JSP

The body of the action contains elements using the JSP syntax.
The body of the action may be empty.

empty

The body must be empty. The default value is “JSP”.

12.4 Given a tag event method (doStartTag, doAfterBody and doEndTag), identify
the correct description of the methods trigger.

When a tag is first encountered the doStartTag() method is invoked.
When the custom tag implements IterationTag interface, when the body of the
custom tag has completed, the doAfterBody() method is invoked.
When the custom tag reached the end tag the doEndTag() method is invoked.

12.5 Identify valid return values for the following methods:

Please send your comments to: KZrobok@Setfocus.com

50

doStartTag()

Empty and Non-Empty Action

If the action is an empty action, the doStartTag() method must return
SKIP_BODY.

If the action is a non-empty action, the doStartTag() method may return
SKIP_BODY or EVAL_BODY_INCLUDE.

If SKIP_BODY is returned the body is not evaluated.
If EVAL_BODY_INCLUDE is returned, the body is evaluated and "passed
through" to the current out.

doAfterBody()

If doAfterBody() returns EVAL_BODY_AGAIN, a new evaluation of the body will
happen (followed by another invocation of doAfterBody()).

If doAfterBody() returns SKIP_BODY no more body evaluations will occur, the
value of out will be restored using the popBody method in pageContext, and then
doEndTag will be invoked.

doEndTag()

If this method returns EVAL_PAGE, the rest of the page continues to be
evaluated.

If this method returns SKIP_PAGE, the rest of the page is not evaluated and the
request is completed. If this request was forwarded or included from another
page (or Servlet), only the current page evaluation is completed.

pageContext.getOut()

Returns the current JspWriter stream being used for client response.

12.6 Given a “BODY” or “PAGE” constant, identify a correct description of the
constant’s use in the following methods:

doStartTag()
doAfterBody()
doEndTag()

SKIP_BODY

Skip body evaluation.
Valid return value for doStartTag and doAfterBody.

Please send your comments to: KZrobok@Setfocus.com

51

EVAL_BODY_INCLUDE

Evaluate body into existing out stream.
Valid return value for doStartTag.

SKIP_PAGE

Skip the rest of the page.
Valid return value for doEndTag.

EVAL_PAGE

Continue evaluating the page.
Valid return value for doEndTag().

EVAL_BODY_AGAIN

Request the reevaluation of some body.
Returned from doAfterBody. For compatibility with JSP 1.1, the value is
carefully selected to be the same as the, now deprecated,
BodyTag.EVAL_BODY_TAG,

EVAL_BODY_BUFFERED

Request the creation of new buffer, a BodyContent on which to evaluate
the body of this tag.
Returned from doStartTag when it implements BodyTag.
This is an illegal return value for doStartTag when the class does not
implement BodyTag.

12.7 Identify the method is the custom tag handler that accesses:

a given JSP implicit variable

A PageContext instance provides access to all the namespaces associated with
a JSP page, provides access to several page attributes, as well as a layer above
the implementation details.

The following methods provide convenient access to implicit objects:
getOut(), getException(), getPage() getRequest(), getResponse(), getSession(),
getServletConfig() and getServletContext().

The following methods provide support for forwarding, inclusion and error
handling: forward(), include(), and handlePageException().

the JSP page’s attributes.

PageContext.findAttribute()

Please send your comments to: KZrobok@Setfocus.com

52

public abstract java.lang.Object findAttribute(java.lang.String name)

Searches for the named attribute in page, request, session (if valid), and
application scope(s) in order and returns the value associated or null.

PageContext.getAttributeNamesInScope()

public abstract java.util.Enumeration getAttributeNamesInScope(int scope)

Enumerate all the attributes in a given scope

12.8 Identify methods that return an outer tag from within an inner tag handler.

findAncestorWithClass

public static final Tag findAncestorWithClass(Tag from, java.lang.Class klass)

Find the instance of a given class type that is closest to a given instance.
This method uses the getParent method from the Tag interface. This
method is used for coordination among cooperating tags.

getParent

public Tag getParent()

Get the parent (closest enclosing tag handler) for this tag handler. This
method is used by the findAncestorWithClass() method in TagSupport.

J2EE Design Patterns

13.1 Given a scenario description with a list of issues, select the design patters
(Value Objects, MVC, Data Access Object or Business Delegate) that would best
solve those issues.

13.2 Match design patterns with statements describing potential benefits that
accrue from the use of the pattern, for any of the following patterns:
ValueObjects
MVC
Data Access Object
Business Delegate

See Below

Please send your comments to: KZrobok@Setfocus.com

53

Value Objects

Context

Application clients need to exchange data with enterprise beans.

Problem

J2EE applications implement server-side business components as session
beans and entity beans. Session beans represent the business services and
maintain a one-to-one relationship with the client. Entity beans on the other hand
are multi-user, transactional objects representing persistent data. A session bean
provides coarse-grained service methods when implemented per the Session
Façade pattern. Some of the service methods may return data to the client that
invoked the methods. In such cases, the client must invoke the session bean's
get methods multiple times until the client obtains values for all the attribute
values. Every such method call made to the session bean is potentially remote.

An entity bean implements persistent business components. An entity bean
exposes the values of its attributes by providing an accessor method (also
referred to as a getter or get method) for each attribute. When a client needs the
data values from an entity bean, it may invoke the entity bean's get methods
multiple times until the client obtains data for every attribute that it needs. Again,
like the session bean, every such method call made to the entity bean is
potentially remote.

Thus, in an EJB application each invocation on a session bean or an entity bean
is potentially a remote method invocation that utilizes the network layer
regardless of the proximity of the client to the bean. Such invocations on the
enterprise beans create an overhead on the network. As the usage of these
remote methods increases, application performance can significantly degrade.
Therefore, multiple calls to get methods that return single attribute values is
inefficient for obtaining data values from an enterprise bean.

Enterprise bean method calls may permeate the network layers of the system
even if the client and the EJB container holding the entity bean are both running
in the same JVM, OS, or physical machine. Some vendors may implement
mechanisms to reduce this overhead by using a more direct access approach.

Forces
J2EE applications implement business components as enterprise bean
components. All access to an enterprise bean is performed via remote interfaces
to the bean. Every call to an enterprise bean is potentially a remote method call
with network overhead.

Typically, applications have a greater frequency of read transactions than update
transactions. The client requires the data from the business tier for presentation,
display, and other read-only types of processing. The client updates the data in
the business tier much less frequently than it reads the data.

Please send your comments to: KZrobok@Setfocus.com

54

The client usually requires more than one attribute value of an enterprise bean.
The client may also need values for the dependent objects of the enterprise
bean. Thus, the client may invoke multiple remote calls to obtain the required
data.

The number of calls made by the client to the enterprise bean impacts network
performance. Chattier applications— those with increased traffic between client
and server tiers— often degrade network performance.

Solution
Use a Value Object to encapsulate the business data. A single method call
is used to send and retrieve the Value Object. When the client requests the
enterprise bean for the business data, the enterprise bean can construct
the Value Object, populate it with its attribute values, and pass it by value
to the client.

Clients usually require more than one value from an enterprise bean. To reduce
the number of remote calls and to avoid the associated overhead, it is best to use
value objects to transport the data from the enterprise bean to its client.

When an enterprise bean uses a value object, the client makes a single remote
method invocation to the enterprise bean to request the value object instead of
numerous remote method calls to get individual attribute values. The enterprise
bean then constructs a new value object instance and copies the attribute values
from its attributes into the newly created value object. It then returns the value
object to the client. The client receives the value object and can then invoke its
accessor (or getter) methods to get the individual attribute values from the value
object. Or, the implementation of the Value Object may be such that makes all
attributes public. Because the value object has been passed by value to the
client, all calls to the value object instance are local calls instead of remote
method invocations.

Model View and Control (MVC)

The Problem:
Supporting Multiple Enterprise Clients

Now, more than ever, enterprise applications need to support multiple
types of users with multiple types of interfaces. For example, an online
store may require an HTML front for Web customers, a WML front for
wireless customers, a JFC/Swing interface for administrators, and an XML-
based Web service for suppliers.

Please send your comments to: KZrobok@Setfocus.com

55

When developing an application to support a single type of client, it is sometimes
beneficial to interweave data access logic with interface-specific logic for
presentation and control. Such an approach, however, is inadequate when
applied to enterprise systems that need to support multiple types of clients:
Different applications need to be developed, one to support each type of client
interface.

Non-interface-specific code is duplicated in each application, resulting in
duplicate efforts in implementation (often of the copy-and-paste variety), as well
as testing and maintenance.

The task of determining what to duplicate is expensive in itself, since interface-
specific and non-interface-specific code are intertwined.

The duplication efforts are inevitably imperfect. Slowly, but surely, applications
that are supposed to provide the same core functionality evolve into different
systems.

How can an enterprise support multiple types of clients and at the same time
avoid these costs? The following forces influence the solution:
The same enterprise data needs to be accessed when presented in different
views: e.g. HTML, WML, JFC/Swing, XML.

The same enterprise data needs to be updated through different interactions: e.g.
link selections on an HTML page or WML card, button clicks on a JFC/Swing
GUI, SOAP messages written in XML.

Please send your comments to: KZrobok@Setfocus.com

56

Supporting multiple types of views and interactions should not impact the
components that provide the core functionality of the enterprise application.
A Solution: Use the Model-View-Controller Architecture

By applying the Model-View-Controller (MVC) architecture to a J2EE
application, you separate core data access functionality from the
presentation and control logic that uses this functionality. Such separation
allows multiple views to share the same enterprise data model, which
makes supporting multiple clients easier to implement, test, and maintain.

The MVC architecture has its roots in Smalltalk, where it was originally applied to
map the traditional input, processing, and output tasks to the graphical user
interaction model. However, it is straightforward to map these concepts into the
domain of multi-tier enterprise applications:

The model represents enterprise data and the business rules that govern access
to and updates of this data. Often the model serves as a software approximation
to a real-world process, so simple real-world modeling techniques apply when
defining the model.

A view renders the contents of a model. It accesses enterprise data through the
model and specifies how that data should be presented. It is the view's
responsibility to maintain consistency in its presentation when the model
changes. This can be achieved by using a push model, where the view registers
itself with the model for change notifications, or a pull model, where the view is
responsible for calling the model when it needs to retrieve the most current data.

Please send your comments to: KZrobok@Setfocus.com

57

A controller translates interactions with the view into actions to be performed by
the model. In a stand-alone GUI client, user interactions could be button clicks or
menu selections, whereas in a Web application, they appear as GET and POST
HTTP requests. The actions performed by the model include activating business
processes or changing the state of the model. Based on the user interactions and
the outcome of the model actions, the controller responds by selecting an
appropriate view.

The MVC architecture has the following benefits:

Multiple views using the same model. The separation of model and view
allows multiple views to use the same enterprise model. Consequently, an
enterprise application's model components are easier to implement, test, and
maintain, since all access to the model goes through these components.

Easier support for new types of clients. To support a new type of client, you
simply write a view and controller for it and wire them into the existing enterprise
model.

Data Access Object (DAO)

Context

Access to data varies depending on the source of the data. Access to persistent
storage, such as to a database, varies greatly depending on the type of storage
(RDBMS, OODBMS, flat files, and so forth) and the vendor implementation.

Problem

Many real-world J2EETM applications need to use persistent data at some point.
For many applications, the persistent storage is implemented with different
mechanisms, and there are marked differences in the APIs used to access these
different persistent storage mechanisms. Other applications may need to access
data that resides on a different system. For example, the data may reside on a
mainframe, an LDAP repository, a B2B service, a credit card bureau, and so
forth.

Typically, applications use persistent shared distributed components such as
entity beans to represent persistent data. An application is considered to employ
bean-managed persistence for its entity beans when these entity beans explicitly
access the persistent storage— that is, the entity bean includes code to directly
access the persistent storage. An application with simpler requirements may
forego using entity beans and instead, use session beans or servlets to directly
access the persistent storage to retrieve and modify the data.

Applications can use the JDBCTM API to access data residing in an RDBMS. The
JDBC API enables standard access and manipulation of data in a persistent
storage, such as a relational database. JDBC enables J2EE applications to use
SQL statements, which are the standard means for accessing RDBMS tables.
However, even within an RDBMS environment, the actual syntax and format of
the SQL statements may vary depending on the particular database product.

Please send your comments to: KZrobok@Setfocus.com

58

There is even greater variation with different types of persistent storage. Access
mechanisms, supported APIs, and features vary drastically when comparing a
relational type of persistent storage such as RDBMS to other types of persistent
stores, such as Object Oriented Databases (OODBMS), file system-based ISAM
databases, or simply flat files. Applications that need to access data from a
legacy or disparate system (for example, a mainframe, CORBA service or B2B
service) are often required to use APIs that may be proprietary. Such disparate
data sources offer challenges to the application and can potentially create a tight
integration between application code and integration code. When business
components— entity beans, session beans and even presentation components
like servlets and JSPTM)— need to access a data source, they can use the
appropriate API to achieve connectivity and manipulate the data source. But,
including the connectivity and data access code within these components
introduces a tight coupling between the components and the data source
implementation. Such code dependencies in the components makes it difficult
and tedious to migrate the application from one type of data source to another.
When the data source changes, the components need to be changed to handle
the new type of data source.

Forces

Components such as bean-managed entity beans, session beans and
servlets/JSP need to retrieve and store information from persistent stores and
other data sources like legacy systems, B2B, LDAP, and so forth.
Persistent storage APIs vary depending on the product vendor. Other data
sources may have APIs that are non-standard and/or proprietary. These APIs
and their capabilities also vary depending on the storage type (RDBMS,
OODBMS, XML documents, flat files, and so forth). There is a lack of uniform
APIs to address the requirements to access such disparate systems.
Components accessing legacy systems to retrieve and store data is typically
done using proprietary APIs.

Portability of the components is directly affected when specific access
mechanisms and APIs are included in the components.
Components need to be transparent to the actual persistent store or data source
implementation to provide easy migration to different vendor products, different
storage types, and different data source types.

Solution

Use a Data Access Object to abstract and encapsulate all access to the
data source. The Data Access Object manages the connection with the data
source to obtain and store data.

The Data Access Object (DAO) is the primary object of this pattern. The DAO
implements the access mechanism required to work with the data source. The
data source could be a persistent store like an RDBMS, an external service like a
B2B exchange, a repository like an LDAP database or a business service
accessed via CORBA IIOP or low-level sockets. The business component that
relies on the DAO object uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source implementation details from
its clients. Because the interface exposed by the DAO to clients does not change
when the underlying data source implementation changes, this pattern allows the

Please send your comments to: KZrobok@Setfocus.com

59

DAO to adapt to different storage schemes without affecting its clients or
business components. Essentially, the DAO acts as an adapter between the
component and the data source.

Business Delegate

Context

The system exposes the entire business service API to its clients, often across a
network.

Problem

Presentation-tier components interact directly with business services. This direct
interaction exposes the underlying implementation details of the business service
API to the presentation tier. As a result, the presentation-tier components are
vulnerable to changes in the implementation of the business services: when the
implementation of the business services change, the exposed implementation
code in the presentation tier must change too.

Additionally, there may be a detrimental impact on network-performance because
presentation-tier components that use the business service API make too many
invocations over the network. This happens when presentation-tier components
use the underlying API directly with no client-side caching mechanism or
aggregating service.

Lastly, exposing the service APIs directly to the client forces the client to deal
with the networking issues associated with the distributed nature of EJBTM
technology.

Forces

Presentation-tier clients need access to business services.
Device clients (including rich clients) need access to the business service.
Business service API may change as business requirements evolve.
Goal should be to minimize coupling between presentation-tier clients and the
business service API, thus hiding the underlying implementation details of the
service, such as lookup and access.

Desirable to implement caching mechanism for business service information.
Desirable to reduce network traffic between client and business services.
Business Delegate may be seen as adding an unnecessary layer between the
client and the service thus introducing added complexity and decreasing
flexibility.

Solution

Use a Business Delegate to reduce coupling between presentation-tier
clients and business services. The Business Delegate hides the underlying
implementation details of the business service, such as lookup and access
details of the EJB architecture.

Please send your comments to: KZrobok@Setfocus.com

60

The Business Delegate acts as a client-side business abstraction; it provides an
abstraction for, and thus hides the implementation of the business services.
Using a Business Delegate reduces the coupling between presentation-tier
clients and the system's business services. Depending on the implementation
strategy, the Business Delegate may shield clients, from possible volatility in the
implementation of the business service API. Potentially, this reduces the number
of changes that must be made to the presentation-tier client code when the
business service API or its underlying implementation changes. However, the
Business Delegate may still require modification if the underlying business
service API changes.

Often, developers are skeptical when a design goal such as abstracting the
business layer causes additional upfront work in return for future gains. However,
using this pattern or its strategies results in only a small amount of additional up
front work and provides considerable benefits. The main benefit is hiding the
details of the underlying service. For example, the client can become transparent
to naming and lookup services. The Business Delegate also handles the
exceptions from the business services such as EJB exceptions, JMS exceptions
and so on. The Business Delegate may intercept such service level exceptions
and generate application level exceptions instead. Application level exceptions
are easier to handle by the clients, and may be user friendly. These gains
present a compelling reason to use the pattern.

Another benefit is that the delegate may cache results. Caching results can
significantly improve performance, because it limits unnecessary and potentially
costly round trips over the network.

A Business Delegate uses a component called the Lookup Service. The Lookup
Service is responsible for hiding the underlying implementation details of the
business service lookup code. The Lookup Service may be written as part of the
delegate, but we recommend that it be implemented as a separate component,
as outlined in the Service Locator [SJC] pattern.

When the Business Delegate is used with a Session Façade, typically there is a
1-1 relationship between the two. This 1-1 relationship exists because logic that
might have been encapsulated in a Business Delegate relating to its interaction
with multiple business services (creating a 1-many relationship) will often be
factored back into a Session Façade.

Finally, it should be noted that this pattern could be used to reduce coupling
between other tiers, not simply the presentation and the business tiers.

